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Abstract

Implementation of the Immersed Boundary Method in the Weather Research and

Forecasting model

by

Katherine Ann Lundquist

Masters of Science, Plan II in Mechanical Engineering

University of California, Berkeley

Professor Fotini Katopodes Chow, Chair

Accurate simulations of atmospheric boundary layer flow are vital for predicting dispersion

of contaminant releases, particularly in densely populated urban regions where first re-

sponders must react within minutes and the consequences of forecast errors are potentially

disastrous. Current mesoscale models do not account for urban effects, and conversely ur-

ban scale models do not account for mesoscale weather features or atmospheric physics. The

ultimate goal of this research is to develop and implement an immersed boundary method

(IBM) along with a surface roughness parameterization into the mesoscale Weather Re-

search and Forecasting (WRF) model. IBM will be used in WRF to represent the complex

boundary conditions imposed by urban landscapes, while still including forcing from regional

weather patterns and atmospheric physics. This document details preliminary results of this

research, including the details of three distinct implementations of the immersed boundary

method. Results for the three methods are presented for the case of a rotation influenced

neutral atmospheric boundary layer over flat terrain.
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Chapter 1

Introduction

Large Eddy Simulation (LES) of the atmosphere has become the preferred method for

computational research in mesoscale weather prediction. While LES is still uncommon in

operational forecasting due the limits of current computing power, it will likely become

the preferred method in the future. As atmospheric LES codes are widely used in the

research community and promise to be the future standard for operational forecasting,

there is a great deal of interest on the part of academic researchers in improving the fore-

casting ability of these models. Technology developed by researchers has a direct path to

transfer to operational use through the updating and distribution of open source numerical

weather prediction codes. Atmospheric simulations often include complex terrain and are

coarsely resolved, leaving the accuracy of the prediction to be determined by the quality of

the parameterizations. The prolific use of parameterizations results in many challenges and

opportunities for improvement by researchers. One such opportunity is improving the treat-

ment of surface boundary conditions for complex terrain through the use of the immersed

boundary method (IBM). For this project, three different immersed boundary treatments

were implemented into the Weather Research and Forecasting (WRF) model which is a

mesoscale code with LES options suitable for both research and operational use. The ef-

fects of the IBM implementations were studied for neutral atmospheric boundary layer flow.

While the neutral boundary layer case is greatly idealized, the study provides insight on
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which implementation should be further pursued for use with three-dimensional complex

terrain.

1.1 Motivation

Accurate prediction of velocity fields and turbulent kinetic energy from mesoscale

weather forecasting models is necessary to predict dispersion of hazardous substances such

as those released in an industrial accident or malicious attack. Accurate plume predictions

become even more vital in densely populated urban areas where they are used to aid in

emergency response planning. Governmental agencies such as the National Atmospheric

Release Advisory Center (NARAC) at Lawrence Livermore National Laboratory (LLNL)

are responsible for providing dispersion predictions in emergency situations. Dispersion

models used by these agencies often rely on inputs from mesoscale numerical weather fore-

casting models; therefore it is imperative that the predictions are correct. Current mesoscale

models can not accurately deal with heterogeneous urban regions, and have been shown to

over predict wind velocity and shear in those cases. These over predicted quantities lead to

increased dispersion and consequently an underestimation of the contaminant concentration

and associated risks.

The National Center for Atmospheric Research (NCAR) has developed the numerics

for a new, sophisticated mesoscale model known as the Weather and Research Forecasting

(WRF) model. This model, like other mesoscale codes, is subject to several limitations

and is currently not able to explicitly represent flow in urban areas. One such limitation

is the use of terrain-following vertical coordinates which is standard in WRF and in other

mesoscale models. Steep terrain gradients such as those formed by tall buildings cause ex-

treme distortion of the near surface grid cells in terrain following coordinates, which makes

it difficult if not impossible to obtain accurate forecasts in urban environments. Because of

this meshing limitation in mesoscale models, classic computational fluid dynamics (CFD)

codes, typically with unstructured grids, are currently used instead of atmospheric codes

such as WRF when urban-scale resolution is desired. Urban-scale CFD models are forced
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with simplified boundary conditions, neglecting the effects of regional weather patterns. Ad-

ditionally, they do not normally include atmospheric processes such fluxes of surface heat

and moisture. Idealized boundary conditions and the absence of atmospheric processes are

presently major sources of error in CFD simulations of urban dispersion. Thus current

mesoscale models, which simulate regional-scale atmospheric processes, are unable to rep-

resent urban areas, while current CFD models, which can simulate complex geometries,

are unable to incorporate realistic atmospheric physics. This research seeks to improve the

ability of WRF to predict dispersion of contaminants in urban environments by allowing

simulations at urban-scale resolution. This requires improvements of numerical represen-

tations of velocity fields and turbulent kinetic energy in regions of complex urban terrain.

Improvements to the mesoscale model will be accomplished by modifying the approach used

for the boundary conditions of the urban terrain.

Once the project is completed it will be possible to model an urban environment in

detail using the mesoscale model WRF. This will be the first time that a mesoscale model

will include the functionality needed to model a domain of the urban scale by accurately

representing complex building surfaces. Improved results from urban simulations will lead

to more accurate numerical representations of contaminant dispersion. Once heterogeneous

urban environments can be modeled in WRF, they can be nested into much larger mesoscale

domains. This means that the larger mesoscale model will provide lateral boundary condi-

tions with the correct forcing to the nested urban scale model. Regional mesoscale weather

features will then be included in the urban-scale model instead of just simplified boundary

conditions. Such seamless integration between the larger mesoscale model and the urban

scale does not currently exist and would be a large contribution to the atmospheric disper-

sion modeling community.

1.2 Overview

The goal of this research is to develop improved surface representations that are suitable

for accurately dealing with the complex terrain found in an urban setting. This will be
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accomplished by adding immersed boundary method (IBM) capabilities to WRF. WRF uses

a terrain-following coordinate system; therefore topographical gradients skew computational

cells near the surface. The implementation of IBM will enable the representation of steep

surface gradients like those formed by buildings, which normally cause WRF to fail due

to a combination of grid skewing and strong vertical velocity components. IBM allows the

boundaries of complex surfaces to be represented on a Cartesian grid, eliminating difficulties

arising from the terrain following vertical coordinate system in WRF. Rather than explicitly

adding structures to the terrain surface, the effects of the boundaries are represented by an

additional forcing term in the momentum equation. This is achieved by applying boundary

conditions to nodes neighboring the immersed terrain boundary that enforce the desired

boundary condition on the surface.

Several different implementations of IBM have been posed by researchers. The first

step in implementing IBM into WRF is to study the effects of various techniques used in

IBM. The simplest canonical case for geophysical flows is that of a three-dimensional neu-

tral atmospheric boundary layer. Other canonical cases often used for verifying numerical

models are two-dimensional flow over an isolated hill and three-dimensional flow over a

Gaussian bump. These test cases provide an excellent proof of concept, and verify accurate

implementation of the new method for treating boundary conditions. Results are presented

for three variants of the IB method for the neutral boundary layer case. The next step

is to extend the IBM formulation to complex terrain, and reproduce the isolated hill and

Gaussian bump cases.

Finally, IBM will be applied to a real urban case. Field data exists for an urban en-

vironment from the Joint URBAN 2003 field campaign in Oklahoma City, in which LLNL

participated. The field data is extensive and includes measurements of velocity profiles, tem-

perature, turbulent kinetic energy, and concentration from releases of a passive scalar. Once

IBM is implemented in three dimensions the one meter terrain data for Oklahoma City can

be accurately represented in WRF. Using input data from the intensive observation periods

in Oklahoma City, comparisons can be made between predicted and real measurements of

velocity fields, temperature, turbulent kinetic energy, and scalar concentrations.
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Chapter 2

Details of the Weather Research

and Forecasting Model

WRF is an open source community model that is designed to be used for a variety of

purposes ranging from operational weather prediction to idealized geophysical flow simula-

tions. The software is designed to be flexible and modular, which facilitates development

of the code by the broad academic community. Currently, there are two dynamic solvers,

called cores, that will operate within the WRF software framework. These are the Non-

hydrostatic Mesoscale Model (NMM) core and the Eulerian Mass (EM) core. The NMM

core is used operationally, and the EM core is generally used for research purposes. The EM

core is also known as Advanced Research WRF (ARW), and is the core that is the focus

of the following discussion. ARW has principally been developed by the National Center

for Atmospheric Research (NCAR). As of 2006 NCAR continues to develop the model, as

well as provide user support. The EM core solves the non-hydrostatic compressible Euler

equations, although a hydrostatic option is included. The code is fully portable, designed

to operate in a massively parallel environment, and includes directives for both MPI and

OpenMP.

ARW is a conservative finite difference model that is spatially discretized using an

Arakawa-C staggered grid. Uniform grid spacing is used in the horizontal directions, and
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a terrain following hydrostatic pressure coordinate is used in the vertical direction. Addi-

tionally, a stretching function may be applied to the vertical coordinate. Second to sixth

order advection schemes are available in the WRF model. Even orders are centered, while

odd orders are upwind biased. A time-split integration scheme is used to deal with the

full range of frequencies admitted by the Euler equations. In this scheme a third order ex-

plicit Runge-Kutta method is used for time advancement of meteorologically significant low

frequency physical modes, while a smaller time step is needed to account for the higher fre-

quency modes such as acoustic and Lamb waves. Horizontally propagating acoustic modes

are integrated using a forward-backward scheme, and vertically propagating acoustic modes

and buoyancy oscillations are treated implicitly. One and two way grid nesting, as well as

moving nests are supported.

Periodic, open, symmetric, and specified boundary conditions are allowed in the lateral

directions. The bottom boundary condition sets the contravariant or normal velocity to

zero, and allows free slip of the covariant velocities. The top boundary is a surface of

constant pressure, and enforces the Cartesian vertical velocity w to be zero. Damping

functions may be applied at the top boundary to control the reflection of waves.

In this chapter, further details are given on the WRF model. The governing equations

are derived in Section 2.1. The derivation begins with the compressible Euler equations,

and ends with the perturbation form of the equations that have been transformed into the

terrain following hydrostatic pressure coordinate used in WRF. Section 2.2 discusses the

time advancement scheme used in WRF, and Section 2.3 details the treatment of lateral

and vertical boundary conditions in WRF. It is especially important to examine the surface

boundary condition, as this condition is the focus of the discussion in Chapter 3 on the

implementation of the immersed boundary method.

2.1 The Governing Equations of WRF

WRF uses a terrain following hydrostatic pressure coordinate, shown in Figure 2.1.

Historically, it was convenient in many meteorological applications to use pressure as an
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Figure 2.1. An example of the η coordinate used by WRF.

independent variable instead of height. The notion of pressure as an independent coor-

dinate in meteorology has been around since at least 1910, when it was published by

Bjerknes and Coll. in Dynamic Meteorology and Hydrography. Later, Eliassen [1949] framed

the equations of motion using an isobaric vertical coordinate. Eliassen and others explained

that in this framework, the vertical velocity can be diagnosed from the continuity equation

using the instantaneous horizontal velocities and the thermodynamic fluid properties. This

unique property would eventually lead to the development of many atmospheric numerical

models with isobaric coordinate systems, because of the ease of implementation and signif-

icant computational savings arising from diagnosing the vertical velocity. Phillips further

advanced the use of pressure coordinates when in 1957 he proposed the σ coordinate sys-

tem. In the previous pressure system, the terrain surface did not coincide with a coordinate

surface. In the σ system, σ = p/π, where π is the pressure at the Earth’s surface. The

non-dimensional σ coordinate ranges from unity at the surface to zero at the top of the

atmosphere, and provides the important property of aligning the lower coordinate surface

with the terrain. Kasahara [1974] synthesized all of these developments, and succinctly

posed the equations of motion in terms of height, isobaric, and isentropic σ coordinates.
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Additionally, Kasahara transformed the equation for conservation of energy into each of the

three coordinate systems.

As computational power increased and meshes became finer, it became clear that the

hydrostatic assumption that worked so well at synoptic scales (100’s of kilometers) did not

work well at the mesoscale (10’s of kilometers). In fact, Laprise [1992] notes that non-

hydrostatic effects become perceptible when the spatial scale of interest falls below 100km,

and must be incorporated at scales of 10km. For this reason, Laprise developed a trans-

formation of the fully compressible non-hydrostatic Euler equations into a terrain following

hydrostatic pressure coordinate. In this transformation the advantage of a diagnostic con-

tinuity equation is lost, and it once again becomes prognostic. However, the equations of

Laprise [1992] revert to the form given by Kasahara [1974] in the hydrostatic limit. The work

of Laprise became the inspiration for the framework of WRF, which solves the perturbation

form of these equations for a moist atmosphere.

2.1.1 The Compressible Euler Equations

The prognostic equations governing the WRF model are given in the NCAR technical

note NCAR/TM-468+STR, however, it is worthwhile to investigate their derivation. They

differ from the compressible Euler equations by the transformation to the terrain following

pressure coordinate, inclusion of moisture, map projections, and transformation to a per-

turbation form. The WRF form of the governing equations can be derived beginning from

the inviscid and compressible Navier-Stokes equations given by (2.1).

∂~V

∂t
+ ~V · ∇~V + α∇p+ ~g = F

∂ρ

∂t
+∇ · (ρ~V ) = 0

(2.1)

Here α is the specific volume, and F includes Coriolis effects and any additional forcing

terms such as turbulent mixing or model physics. In order for the Navier-Stokes equations

to be used in WRF, they must first be transformed into a vertical terrain following hy-

drostatic pressure coordinate. This will be accomplished in two parts. First the equations

are transformed to a pressure based coordinate system, and the hydrostatic assumption
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is imposed as the coordinate definition. Then the transformation to the terrain following

coordinate system is made. Finally, the perturbation form of the governing equations is dis-

cussed. For the purposes of this discussion the addition of moisture and mapping factors,

which project the computational domain onto the Earth’s surface, are not included.

2.1.2 Transformation to Hydrostatic Pressure Coordinates

Following the transformation given by Kasahara [1974], and taking the pressure coor-

dinate to be π, derivatives take the following form for any scalar a:(
∂a

∂t

)
π

=
(
∂a

∂t

)
z

+
∂a

∂z

(
∂z

∂t

)
π(

∂a

∂x

)
π

=
(
∂a

∂x

)
z

+
∂a

∂z

(
∂z

∂x

)
π

.

The subscript denotes the vertical coordinate that is being held constant for the partial

differentiation. After substitution of the relationship ∂a
∂z = ∂a

∂π
∂π
∂z the temporal and spatial

derivatives for the π coordinate take the form of equations (2.2a) and (2.2b) respectively.(
∂a

∂t

)
π

=
(
∂a

∂t

)
z

+
∂π

∂z

(
∂z

∂t

)
π

∂a

∂π
(2.2a)(

∂a

∂x

)
π

=
(
∂a

∂x

)
z

+
∂π

∂z

(
∂z

∂x

)
π

∂a

∂π
(2.2b)

Using the above transformations, the material derivative can be determined to take the

form: (
Da

Dt

)
π

=
(
∂a

∂t

)
π

− ∂π

∂z

(
∂z

∂t

)
π

∂a

∂π

+ u

[(
∂a

∂x

)
π

− ∂π

∂z

(
∂z

∂x

)
π

∂a

∂π

]
+ v

[(
∂a

∂y

)
π

− ∂π

∂z

(
∂z

∂y

)
π

∂a

∂π

]
+ w

∂π

∂z

∂a

∂π
.

(2.3)

Rearranging the terms of the material derivative by distributing the u and v velocities to

the terms inside of the square brackets forms equation (2.4).(
Da

Dt

)
π

=
(
∂a

∂t

)
π

+ u

(
∂a

∂x

)
π

+ v

(
∂a

∂y

)
π

+
[
w −

(
∂z

∂t
+ u

∂z

∂x
+ v

∂z

∂y

)
π

]
∂π

∂z

∂a

∂π
(2.4)
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The material derivative can then be arranged in the familiar form of (2.5a), where the

expression for π̇ or ∂π
∂t is defined to be of the form (2.5b).(
Da

Dt

)
π

=
(
∂a

∂t

)
π

+ u

(
∂a

∂x

)
π

+ v

(
∂a

∂y

)
π

+ π̇
∂a

∂π
(2.5a)

π̇ =
∂π

∂t
=
∂π

∂z

[
w −

(
∂z

∂t
+ u

∂z

∂x
+ v

∂z

∂y

)
π

]
(2.5b)

Equation (2.5b) can be solved for the vertical velocity w, which yields equation (2.6).

w =
(
∂z

∂t
+ u

∂z

∂x
+ v

∂z

∂y

)
π

+ π̇
∂z

∂π
(2.6)

Additionally, after many instances of the chain rule, the vertical derivative of w is also found

to be equation (2.7).

∂w

∂z
=
∂w

∂π

∂π

∂z
=

∂π

∂z

[[
∂

∂t

(
∂z

∂π

)
+ u

∂

∂x

(
∂z

∂π

)
+
∂u

∂π

∂z

∂x
+ v

∂

∂y

(
∂z

∂π

)
+
∂v

∂π

∂z

∂y

]
π

+ π̇
∂

∂π

(
∂z

∂π

)
+
∂π̇

∂π

∂z

∂π

]
(2.7)

Using the definition of the material derivative in the π coordinate system given by the set

of equations in (2.5), the vertical derivative of w can be significantly simplified from the

above form. Once simplified, the vertical derivative of w is expressed as (2.8).

∂w

∂z
=
∂w

∂π

∂π

∂z
=
∂π

∂z

[
D

Dt

(
∂z

∂π

)
+
∂u

∂π

∂z

∂x
+
∂v

∂π

∂z

∂y

]
π

+
∂π̇

∂π
(2.8)

With the determination of temporal and spatial derivatives complete, the continuity

equation may now be transformed into a pressure coordinate system. This is accomplished

by substituting the transformations for the partial derivatives in x, y, z and time into the

continuity equation. The temporal and horizontal spatial partial derivatives were given

above by equation (2.2), and the partial derivative with respect to z is given by equation

(2.8). After these substitutions, the continuity equation in the pressure coordinate system

is (2.9).(
∂ρ

∂t

)
π

− ∂ρ

∂π

∂π

∂z

(
∂z

∂t

)
π

+
(
∂(ρu)
∂x

)
π

− ∂(ρu)
∂π

∂π

∂z

(
∂z

∂x

)
π

+
(
∂(ρv)
∂y

)
π

− ∂(ρv)
∂π

∂π

∂z

(
∂z

∂y

)
π

+
∂ρπ̇

∂π
+
∂π

∂z

[
D

Dt

(
ρ
∂z

∂π

)
+
∂(ρu)
∂π

∂z

∂x
+
∂(ρv)
∂π

∂z

∂y

]
π

= 0 (2.9)
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The equation above then simplifies (after many more instances of the chain rule) to the

much more familiar form of the continuity equation given by Kasahara [1974].[
∂

∂t
(ρ
∂z

∂π
) +

∂

∂x
(ρu

∂z

∂π
) +

∂

∂y
(ρv

∂z

∂π
)
]

π

+
∂

∂π

(
ρπ̇
∂z

∂π

)
= 0 (2.10)

Next, the momentum equation can be transformed into the pressure coordinate system

using the same substitutions for the partial derivatives. As is standard in the literature

on coordinate transformations for atmospheric applications, the horizontal and vertical

momentum equations are given separately. In this case the vector ~V includes only the

horizontal u and v velocities. The horizontal momentum equation in the pressure coordinate

system is found to be (
D~V

Dt

)
π

+ α∇πp− α
∂π

∂z
(∇πz)

∂p

∂π
= F, (2.11)

and the vertical momentum equation is(
Dw

Dt

)
π

+ α
∂p

∂π

∂π

∂z
+ g = F. (2.12)

The effects of the transformation on the unsteady and advective terms in the momentum

equations are accounted for by the definition of the transformed material derivative for the

new π pressure coordinate. The changes to the pressure term obviously follow the spatial

derivative transformation. It should be noted that the material derivative in the vertical

momentum equation is operating on w, while the definition of the material derivative given

by (2.5a) includes the vertical velocity π̇ in the last term. Assuming the pressure coordinate

π to be hydrostatic, the vertical gradient of the coordinate can be determined as:

∂π

∂z
= −ρg.

The use of the hydrostatic assumption above yields the following definitions shown in (2.13)

for temporal and spatial derivatives in the vertical pressure coordinate system, where the

operator ∇π represents the horizontal gradients and D/Dt is the three dimensional material

derivative. As before ~V includes only the horizontal velocity components. In equations

11



(2.13) geopotential has been introduced, and is defined as φ = gz.(
∂

∂t

)
π

=
(
∂

∂t

)
z

− ρ

(
∂φ

∂t

)
π

∂

∂π
(2.13a)

∇πa = ∇za− ρ(∇πφ)
∂a

∂π
(2.13b)

∇π · ~V = ∇z · ~V − (ρ∇πφ) · ∂
~V

∂π
(2.13c)(

D

Dt

)
π

=
(
∂

∂t

)
π

+ ~V · ∇π + π̇
∂

∂π
(2.13d)

When the hydrostatic assumption is imposed for the pressure coordinate, the unsteady term

in the continuity equation vanishes. The continuity equation simplifies from the form given

in (2.10) to be

∇π · ~V +
∂π̇

∂π
= 0, (2.14)

and the horizontal and vertical momentum equations are(
D~V

Dt

)
π

+ α∇πp+
∂p

∂π
∇πφ = F (2.15)(

Dw

Dt

)
π

+ g

(
1− ∂p

∂π

)
= F. (2.16)

The set of equations above consisting of (2.14), (2.15), and (2.16) are the fully compressible

non-hydrostatic Euler equations given by Laprise [1992].

2.1.3 Transformation to Terrain Following Pressure Coordinates

WRF uses a terrain following hydrostatic pressure coordinate or mass coordinate η given

in terms of the dry hydrostatic pressure Phs. The coordinate η is defined such that it is

zero at the top of the model, and unity at the surface of the terrain. The mass of the fluid

in the column per unit area is then µ. This yields the coordinate definition η = Phs−Phstop

µ ,

where µ(x, y) = Phs surface−Phs top. The transformation to the terrain following coordinate

system uses the same formulation for the temporal and spatial derivatives as used previously.

Following the derivative formulation, the temporal and spatial derivatives in (2.17) for the

12



η coordinate are analogous to those in (2.2) for the π coordinate.(
∂a

∂t

)
η

=
(
∂a

∂t

)
π

+
∂η

∂π

(
∂π

∂t

)
η

∂a

∂η
(2.17a)(

∂a

∂x

)
η

=
(
∂a

∂x

)
π

+
∂η

∂π

(
∂π

∂x

)
η

∂a

∂η
(2.17b)

The material derivative in the η coordinate is(
D

Dt

)
η

=
(
∂

∂t

)
η

+ ~V · ∇η + η̇
∂

∂η
, (2.18)

where

η̇ =
∂η

∂t
=
∂η

∂π

[
π̇ −

(
∂π

∂t
+ u

∂π

∂x
+ v

∂π

∂y

)
η

]
. (2.19)

The physical meaning of η̇ is the contravariant velocity of the vertical coordinate. Follow-

ing the derivation of the continuity equation developed by Kasahara [1974] and explained

in detail in the previous section, the continuity equation in terrain following coordinates

becomes equation (2.20).[
∂

∂t

(
∂π

∂η

)
+

∂

∂x

(
u
∂π

∂η

)
+

∂

∂y

(
v
∂π

∂η

)]
η

+
∂

∂η

(
η̇
∂π

∂η

)
= 0 (2.20)

This form of the continuity equation was given by both Kasahara [1974] and Laprise [1992].

The horizontal and vertical momentum equations are then found to be(
D~V

Dt

)
η

+ α

(
∇ηp− (∇ηπ)

∂η

∂π

∂p

∂η

)
+
∂p

∂η

∂η

∂π

(
∇ηφ− (∇ηπ)

∂η

∂π

∂p

∂η

)
= F (2.21a)(

Dw

Dt

)
η

+ g

(
1− ∂p

∂η

∂η

∂π

)
= F. (2.21b)

In addition it is noted that the definition of the dry hydrostatic η coordinate used in WRF

yields the relationships ∂η/∂π = 1/µ and ∂φ/∂η = −αµ. When these relationships are

substituted into the continuity equation (2.20), its form simplifies substantially. The sim-

plified continuity equation below is equivalent to the equation given in the WRF description

by Skamarock et al. [2005], where the notation differs slightly. Kasahara and Laprise use

the del notation to operate only in the horizontal dimensions (as was used above), while

Skamarock et al. uses a three dimensional del operator.(
∂µ

∂t
+
∂(µu)
∂x

+
∂(µv)
∂y

)
η

+
∂(µη̇)
∂η

= 0 (2.22)

13



The above relationships for the η coordinate can also be utilized to simplify the momentum

equations. After multiplying the horizontal momentum equations by µ, the following form

is found:

µ

(
D~V

Dt

)
η

− ∂φ

∂η
∇ηp+

∂p

∂η
∇ηφ = F. (2.23)

Some manipulation is required to get the momentum equation into the strong conservation

form, as it appears in [Skamarock et al., 2005, Section 2.2]. From the continuity equation,

we know that ∂µ
∂t = −∇η · (µ~V ) − ∂(µη̇)

∂η . The terms on the left and right hand side are

added and subtracted respectively from the momentum equation. The term p ∂
∂x(∂φ

∂η ) is also

added and subtracted to the horizontal momentum equation, while the order of the partial

differentiation is interchanged. These manipulations yield the strong conservation form of

the momentum equations appearing in the WRF description. In this equation the semicolon

notation represents the dyadic product.(
∂(µ~V )
∂t

)
η

+∇η · (µ~V ; ~V ) +
∂

∂η
(µη̇~V )− ∂

∂x

(
p
∂φ

∂η

)
+

∂

∂η

(
p
∂φ

∂x

)
= F (2.24)(

∂(µw)
∂t

)
η

+∇η · (µ~V w) +
∂

∂η
(µη̇w)− g

(
∂p

∂η
− µ

)
= F (2.25)

In addition to the conservation of mass and momentum, an equation for potential temper-

ature is solved. Potential temperature θ is a conserved quantity when the atmosphere is

assumed to be adiabatic, so the governing equation takes the form used for a conserved

scalar. (
∂(µθ)
∂t

)
η

+∇η · (µ~V θ) +
∂

∂η
(µη̇θ) = Fθ (2.26)

Pressure is then diagnosed from the equation of state below, where γ is the ratio of heat

capacities of dry air Cp/Cv and Rdry is the universal gas constant.

p = po

(
Rdryθ

poαdry

)γdry

(2.27)

2.1.4 Perturbation Form of the Governing Equations

It is advantageous to recast the governing equations into a perturbation form that is

a departure from the hydrostatic state. This removes large canceling contributions from

the horizontal pressure gradients, and reduces numerical error. It is assumed that pressure,
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specific volume, geopotential, and column mass per unit area take the form p = p̄(z) + p′,

α = ᾱ(z)+α′, φ = φ̄(z)+φ′, and µd = µ̄d(x, y)+µd′ where the perturbation is the deviation

from the hydrostatic and time invariant reference state given by ∇p̄ = g/ᾱ. The hydrostatic

reference state variables p̄, ᾱ, and φ̄ are strictly functions of z in Cartesian coordinates, but

are functions of (x, y, η) in the transformed terrain following coordinate. After substituting

in the mean and perturbation values, the reference state may be subtracted. That is ᾱ∇ηp̄ =

∇ηφ̄ may be subtracted. It is also noted that the following relationships exist within the

framework of the perturbation formulation ∂p̄/∂η = µ̄, ∂φ̄/∂η = −µ̄ᾱ, and ∂φ′/∂η =

−µ̄α′ − µ′α. Now the time invariance of the base state is used, and the equation for mass

conservation becomes (
∂µ′
∂t

+
∂(µu)
∂x

+
∂(µv)
∂y

)
η

+
∂(µη̇)
∂η

= 0. (2.28)

In order to develop the perturbation form for the horizontal momentum equations, the form

given in (2.29) is used as a starting point.(
∂(µ~V )
∂t

)
η

+∇η · (µ~V ; ~V ) +
∂

∂η
(µη̇~V ) + µα∇ηp+

∂p

∂η
∇ηφ = F (2.29)

Substitution of the base and perturbation variables changes only the pressure gradient in

the horizontal conservation of momentum, and both the pressure and gravity terms in

the vertical. In the horizontal momentum equation, the pressure term becomes µᾱ∇ηp̄ +

µα∇ηp′+µα′∇ηp̄+µ∇ηφ̄+µ∇ηφ′+ ∂p′
∂η (∇ηφ)−µ′(∇ηφ). When the base state is subtracted,

the perturbation form of the horizontal momentum equation is(
∂(µ~V )
∂t

)
η

+∇η · (µ~V ; ~V ) +
∂

∂η
(µη̇~V )

+ µα∇ηp′+ µα′∇ηp̄+ µ∇ηφ′+ (∇ηφ)
(
∂p′
∂η

− µ′
)

= F. (2.30)

Substitution of the base state and perturbation quantities into the vertical momentum

equation yields(
∂(µw)
∂t

)
η

+∇η · (µ~V w) +
∂

∂η
(µη̇w)− g

(
∂p̄

∂η
+
∂p′
∂η

− µ̄− µ′
)

= F (2.31)
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The contribution from the base state cancels out, and the perturbation form of the vertical

momentum equation becomes(
∂(µw)
∂t

)
η

+∇η · (µ~V w) +
∂

∂η
(µη̇w)− g

(
∂p′
∂η

− µ′
)

= F. (2.32)

The equation for the conservation of potential temperature remains unchanged. The di-

agnostic relationship for pressure is non-linear, and therefore cannot be represented in

perturbation form without approximation. Therefore, the final perturbation form of the

transformed compressible Euler equations is the set of equations (2.28), (2.30), and (2.32).

2.2 Time Integration

After the perturbation equations are temporally and spatially discretized, they are fur-

ther divided into low frequency and high frequency acoustic terms for the time-split advance-

ment scheme, which is documented in Wicker and Skamarock [2002]. The low frequency

terms are meteorologically significant physical modes such as Rossby waves, gravity waves,

and simple advection. High frequency modes such as acoustic and Lamb waves are inte-

grated on a smaller time step to maintain numerical stability. This is a common strategy

for achieving computational efficiency, because the most expensive terms to evaluate are

calculated on the large time step.

A three step explicit Runge-Kutta (R-K) method is used to advance the large time

step. Horizontally propagating acoustic modes are advanced using a forward-backward

explicit scheme. In the forward-backward scheme the momentum equations are advanced

using a forward scheme relative to the pressure term. Then the updated velocities are used

with a backwards scheme to advance the pressure term. The vertical acoustic modes and

buoyancy oscillations are advanced implicitly. This removes any restrictions on the time

step for vertically propagating acoustic waves and the buoyancy frequency. The large time

step is defined by the user, and the acoustic time step can be user defined or calculated by

WRF. If n acoustic time steps are specified by the user then one is taken in the first R-K

step, n/2 in the second R-K step, and n in the third R-K step. It is common to use six

to twelve acoustic time steps per large time step. The time advancement scheme proceeds
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Table 2.1. The time advancement sequence used in WRF.
Begin Runge-Kutta Loop

1. For the first R-K step only: Compute F (turbulence and physics terms)
2. Compute the tendencies for advection and pressure
Begin Acoustic Loop

3. Advance the horizontal momentum equations
4. Advance the continuity equation
5. Advance the conservation of potential temperature
6. Advance the vertical momentum equation
7. Diagnose acoustic step perturbations of pressure and density

End Acoustic Loop
8. Advance scalar equations
9. Diagnose pressure and density perturbations on the R-K step

End Runge-Kutta Loop

with the loop for the small acoustic time step nested into the larger Runge-Kutta loop. The

time advancement sequence used in WRF is outlined in Table 2.1.

2.3 Boundary Conditions

Several options for lateral boundary conditions are available to WRF users. These are

detailed in the NCAR technical note by Skamarock et al. [2005] and include periodic, open

or radiative, symmetric, and specified. The first three boundary conditions are often used

in idealized cases, where as specified boundary conditions are common in cases with real

external data. Additionally, WRF supports one and two way horizontal nesting. Nesting

is not currently implemented in the vertical direction. This means that an interior nested

domain may have finer resolution in the horizontal extents, but the resolution in the vertical

dimension remains fixed. In a one way nest, the fine domain receives boundary conditions

from the coarse domain. In a two way nest, the fine domain still receives boundary con-

ditions from the coarse domain, but at each time step the solution from the fine domain

replaces the solution on the coarse domain.

The staggered grid, shown in Figure 2.2, begins with a u velocity point in the x dimen-

sion and a v velocity point in the y dimension. This results in (nx) u grid points in x, and

(nx− 1) v and w grid points in x, where (nx) is the user specified number of grid points in
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Figure 2.2. A plan view and elevation view of the WRF staggered grid.

the x direction. Conversely in the y direction there are (ny) v grid points, and (ny − 1) u

and w grid points. In real cases, WRF includes six extra grid points outside of the domain

in each of the horizontal extents. When MPI is used, WRF passes the information for up

to six lateral grid points between processors in a so-called halo exchange.

In the vertical direction the top boundary condition is specified to be isobaric, and the

Cartesian vertical velocity w is set to zero. Additionally, gravity waves can be absorbed

with a diffusion or Rayleigh damping layer. At the bottom boundary the contravariant

coordinate velocity is set to zero, and a kinematic boundary condition is used for the

Cartesian vertical velocity. The set of equations given by (2.33a) and (2.33b) create a free

slip bottom boundary condition.

η̇surf = 0 (2.33a)

wsurf = usurf
∂h

∂x
+ vsurf

∂h

∂y
(2.33b)

In equation (2.33b) h is a function specifying the terrain height. The u and v velocities are

extrapolated to the surface using a quadratic Lagrange polynomial. The shear stress at the

boundary is implicitly set to zero, unless the effects of friction are taken into account by

specifying a user determined coefficient of drag.

In the case of a rough terrain surface, the shear stress at the wall is calculated us-

ing (2.34), where Cd is the coefficient of drag and |U | is the magnitude of the horizontal
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Figure 2.3. WRF sets τw to model a rough surface.

velocities.

τwxz = Cd|U |u, τwyz = Cd|U |v (2.34)

Effects of the shear stress at the wall τw are reflected in the calculation of the diffusion

terms in the horizontal momentum equation. For example, the discretized u momentum

equation would be calculated as in (2.35).

∂(µu)
∂t

∣∣∣∣
1

= . . .+ µ
[ τ2
∆z

− τw
∆z

]
(2.35)

Diffusion terms are calculated in physical space, so the use of the z coordinate (instead of

η) is appropriate here. Equation (2.35) along with equation (2.33) models a rough terrain

surface.

In the vertical direction the staggered grid begins and ends at a w point, meaning that

there are (nz) w points and (nz− 1) u and v points. There are no additional points needed

for boundary conditions. WRF never decomposes the domain in the vertical direction for

parallel processing. This means that there is no need for boundary condition updates or to

use MPI to exchange halos in the vertical dimension.
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Chapter 3

Implementation of the Immersed

Boundary Method

The numerical simulation of atmospheric flow over complex geometries, especially those

geometries found in urban environments, requires effective and efficient computational tech-

niques. Terrain following grids have found common use in atmospheric codes as a method

for dealing with complex geometries. Although this method is effective, it can not be suc-

cessfully used to represent geometries with extreme slopes, such as buildings. An alternative

in this case is the immersed boundary method (IBM). When using IBM, numerics are solved

on a Cartesian grid, and boundaries are represented with the addition of a forcing term in

the Navier-Stokes equations. This chapter gives a brief history of the development of IBM

in Section 3.1, and details three different IBM implementations in Section 3.2. Each of the

three implementations has been used to model a neutral boundary layer, and the results of

that study are given in Chapter 4.

3.1 Background of the Immersed Boundary Method

The immersed boundary method was first proposed by Peskin [1972] and [1977], who

developed the method to simulate blood flow through the mitral valve of the heart. In
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Figure 3.1. Cartoon sketch of an immersed boundary.

the original formulation of IBM, the incompressible Navier-Stokes equations as given by

(3.1) are solved on a two-dimensional Cartesian grid. The effects of the external forcing of

the fluid by the boundaries are represented by the addition of a body force term F in the

equation for the conservation of momentum.

ρ(~ut + ~u · ∇~u) = −∇p+ µ∇2~u+ F (3.1a)

∇ · ~u = 0 (3.1b)

The forcing term takes a non-zero value at grid points that are in the vicinity of the bound-

ary, but has no effect on the computation of grid points away from the boundary. The

magnitude of the force term is calculated by modeling the boundary (the elastic heart

walls) as a set of interconnected springs. It is then assumed that the solid boundary has

no mass so that these forces are transfered to the fluid flow. The main difficulty with this

method, as noted by Peskin, is the determination of the forcing field because it requires

modeling of the stresses and strains internal to the solid boundary. In addition, the compu-

tational cost of resolving flow in the region of the immersed boundary is high, and limited

Peskin to low Reynolds number flows.

Peskin’s application is extremely complex because the heart valve and walls are elastic

and move with the fluid flow. Beginning in the late 1980’s several researchers studied the
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use of the immersed boundary method to represent rigid boundaries. The rigid boundary

case is much simpler because the location of the boundary is known. In theory, Peskin’s

method could be used to represent rigid walls in the limit of zero elastic deformation.

In practice, this can lead to a numerically stiff problem that requires small time steps

[Iaccarino and Verzicco, 2003].

3.1.1 Feedback Forcing Methods

IBM was first employed for rigid boundary applications by Briscolini and Santangelo

[1989] and Goldstein, Handler, and Sirovich [1993]. Briscolini and Santangelo modeled two-

dimensional flow in a square cavity with one moving wall and flow around circular and

square cylinders. Goldstein et al. modeled two-dimensional flow around circular cylinders

and three-dimensional channel flow with smooth and ribbed surfaces. In both studies a

spectral method was used and spurious oscillations appeared at the boundary unless the

forcing was smoothed over several grid points, diffusing the location of the boundary and

reducing the accuracy. Saiki and Biringen [1996] eliminated the spurious oscillations by

using feedback forcing in a finite difference scheme to simulate flow over stationary, rotating,

and oscillating cylinders. The feedback forcing term as appears in Saiki and Biringen [1996]

is given by equation (3.2). In this equation xs represents the location of nodes coincident

with the boundary, and U is the fluid velocity at those points. The desired surface velocity

used to set a Dirichlet boundary condition is v.

F(xs, t) = α

t∫
0

(U(xs, t)− v(xs, t))dt+ β(U(xs, t)− v(xs, t)) (3.2)

If the forcing term is balanced by the unsteady term in the Navier-Stokes equation, as shown

in (3.3), it can more clearly be seen that the forcing term acts as a damped oscillator where

α acts as the spring constant and β is the damping coefficient. In this case, u = U − v,

and the forcing term works to set the fluid velocity equal to the Dirichlet boundary value

so that u tends to zero.

∂u
∂t

≈ α

t∫
0

udt+ βu (3.3)
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The disadvantage of feedback forcing is that the formulation contains parameters α and β

which the user must tune according to the frequency of the fluid flow. Additionally, highly

unsteady flows cause these coefficients to become large, so that the problem is numerically

stiff. Goldstein et al. [1993] found that the time step must decrease by one to two orders of

magnitude to ensure stability.

3.1.2 Direct Forcing Methods

An alternative forcing formulation developed by Mohd-Yusof [1997] does not affect nu-

merical stability or require a smoothing function. In the IB approach used by Peskin [1972],

Briscolini and Santangelo [1989], and Goldstein et al. [1993] the forcing function represents

the action of the boundary on the flow, while the forcing in Mohd-Yusof [1997] is equiva-

lent to setting a velocity boundary condition, and often referred to as direct forcing. The

forcing term can be represented by (3.4), but need not be calculated in the IB implementa-

tion. Instead, the desired Dirichlet boundary value v is directly imposed on the boundary.

Mohd-Yusof used direct forcing in a spectral method scheme to simulate laminar flow over

a ribbed channel.

F =
v −Un

∆t
+ U · ∇U +

1
ρ
∇p− ν∇2U (3.4)

Fadlun, Verzicco, Orlandi, and Mohd-Yusof [2000] used both feedback forcing and di-

rect forcing in a finite difference method to represent three-dimensional complex flows in-

cluding formation of a vortex ring from a nozzle, flow around a sphere, and the flow in

the cylinder of an internal combustion (IC) engine. The IC piston simulation is at a high

enough Reynolds number to require the use of a subgrid-scale turbulence model, and is the

first instance of IBM being used with LES. Fadlun et al. [2000] found that the two forc-

ing methods produced similar results, however, the direct forcing method is advantageous

because there are no flow dependent parameters and the additional forcing term does not

limit stability. Also, unlike with the feedback forcing term which oscillates, the boundary

condition can be satisfied exactly at each time step with direct forcing.
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Figure 3.2. Figure from Fadlun et al. [2000] depicting velocity reconstruction interpolation
methods: (a) stepwise geometry, (b) volume fraction weighting, (c) linear velocity interpo-
lation.

3.1.3 Interpolation Methods for Boundary Reconstruction

The forcing formulations found in Sections 3.1.1 and 3.1.2 are derived in the case that

the grid locations coincide with the boundary. The discrete grid points are not generally

coincident with the boundary nodes xs, and in particular this is impossible on a staggered

grid. Therefore, an interpolation method must be used to determine the forcing needed at

actual computational nodes.

Fadlun et al. [2000] present results for three methods: stepwise geometry, volume frac-

tion weighting, and linear velocity interpolation, as illustrated in Figure 3.2. In the stepwise

geometry method, forcing is imposed at the closest grid point to the boundary, regardless

of the node being interior or exterior of the boundary. No interpolation is needed for this

procedure. In volume fraction weighting the force is scaled by ψb/ψ, the ratio of the volume

of the cell occupied by the boundary ψb to the total cell volume ψ. The forcing is then

applied to the closest fluid node to the boundary. In the velocity interpolation method, a

velocity is imposed for the first fluid point using linear interpolation between the boundary

condition and the velocity at the second fluid point. Methods that satisfy the boundary

conditions by setting the velocity at fluid nodes are often called velocity reconstruction

methods, because the desired velocity field is being reconstructed in the vicinity of the

boundary. Using Richardson extrapolation, Fadlun et al. determined that the stepwise ge-

ometry reconstruction converges slower than first order. The error decreases slightly better
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Figure 3.3. Figure from Iaccarino and Verzicco [2003] proposing several ghost point extrap-
olation methods: (a) linear one-dimensional, (b) linear multi-dimensional, (c) quadratic
multi-dimensional.

than first order for volume fraction weighting, and slightly worse than second order for

linear velocity interpolation.

Iaccarino and Verzicco [2003] present three additional interpolation schemes: linear one-

dimensional, linear multi-dimensional, and quadratic multi-dimensional. These are illus-

trated in Figure 3.3. All of these schemes belong to a class of IB approaches known as

ghost cell methods, where the velocity is set on a node that is inside of the boundary.

In all of the cases, the velocity at the node labeled (1) is found by extrapolation using

the boundary value (0) and the fluid velocity at nodes that are marked as (2) or higher.

In general this means that the fluid velocity at node (1) inside of the boundary is in the

reverse direction of the exterior flow in order to enforce a no slip boundary condition on

the surface. The main difference between the three schemes is the increasing stencil size.

Iaccarino and Verzicco [2003] found that one-dimensional interpolation was accurate for

boundary geometries that were largely aligned with grid lines, however, for curvilinear ge-

ometries the multi-dimensional methods showed improved performance. Using the ghost

cell approach, Iaccarino and Verzicco [2003] modeled flow around a cylinder, flow in a wavy

channel, flow in a piston/cylinder assembly, and flow in a stirred tank.

Tseng and Ferziger [2003] also used the ghost cell approach to model flow past a cylinder,

flow in a wavy channel, and geophysical flow over a three-dimensional Gaussian bump. In

the ghost cell method, a common problem is large negative variable values when the IB
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Figure 3.4. Figure from Tseng and Ferziger [2003] proposing two treatments to minimize
numerical instability: (a) image method, (b) piecewise approximation

is very near the fluid nodes in the interpolation stencil, and far from the ghost point.

Tseng and Ferziger [2003] presented two methods (illustrated in Figure 3.4) for dealing

with this difficulty. In the image method, the interpolation scheme is used to solve for the

fluid properties at the image point (I). Linear interpolation is then used to assign a value

to the ghost point found by φG = 2φO − φI . In the piecewise linear approximation, the

boundary is simply moved to the fluid node. The fluid node coinciding with the boundary

is now the ghost node, however, in this case the boundary condition is assigned to the ghost

node and no interpolation is necessary.

The interpolation method used to represent a rigid boundary is obviously an integral

part of the overall immersed boundary method. It has been as much the focus of active

research as the formulation of the forcing term. The above discussion on interpolation

methods is by no means exhaustive, however, the above ideas are the basis for more com-

plicated methods. For instance, Kang, Iaccarino, and Moin [2004] present four additional

interpolation methods using various stencils based on the ideas of Fadlun et al. [2000].

3.2 Implementations of IBM in WRF

IBM has successfully been used to model complex external flows like bluff body simula-

tions of an automobile [Mittal and Iaccarino, 2005] and internal flows like flow in a stirred

26



tank [Iaccarino and Verzicco, 2003]. In these cases IBM is used in a classic CFD code,

which solves the Navier-Stokes equations. The advantage here is that the flow is solved on

a Cartesian mesh, and an unstructured boundary fitted grid does not need to be generated

or solved. Finite difference methods can easily be implemented on a structured grid, and

the algebraic system of equations to be solved has a diagonal structure. Unstructured grids

are often better suited to finite element or finite volume methods. The nodes map to each

other in a more complicated way, which leads to an irregular data structure that takes more

computational effort to solve. Another undesirable aspect of unstructured grids is that they

often require tedious pre-processing or cleaning of the geometry, and generation of a high

quality grid can be extremely time consuming.

Currently in atmospheric modeling, urban scale simulations are performed using a CFD

solver and mesoscale simulations are performed using a numerical weather prediction (NWP)

code like WRF. In general, unstructured grids are used to model the extremely complex

terrain found at the urban scale. The drawback here is that traditional CFD codes do not

include atmospheric physics like surface fluxes, cloud formation, and radiation. Addition-

ally, CFD codes often must be forced at the boundaries with idealized flows, neglecting the

temporal variability of regional weather effects. Atmospheric physics parameterizations and

regional weather effects are included in NWP codes, but the common use of terrain following

coordinates makes it impossible to represent extremely complex geometries. So, unlike the

above examples, the implementation of IBM into WRF is not to avoid tedious grid gener-

ation or the complications of solving irregular data structures. Instead IBM would negate

the weaknesses of terrain following grids, and allow WRF to be used for urban simulations

so that atmospheric physics and weather effects are included.

Three different IBM implementations have been added to WRF through the addition of

a Fortran module. The implementations are a no slip boundary as in Iaccarino and Verzicco

[2003], velocity reconstruction as in Fadlun et al. [2000] with the log-law modifications of

Senocak et al. [2004], and shear stress reconstruction which is a blending of the original

WRF boundary conditions with ghost cell IBM. Details of the three implementations are
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Figure 3.5. The Arakawa C staggered grid used in WRF.

given in the following sections, and in Chapter 4 they are applied to the case of a neutral

boundary layer.

3.2.1 No Slip Case

The first step in all three of the methods is determination of the cells that are cut by

the immersed boundary. WRF uses an Arakawa C staggered grid shown in Figure 3.5,

which means that cut cells must be determined for each variable that will have a boundary

condition imposed. Velocities are on the cell faces, and pressure and potential temperature

are defined at the cell center. Geopotential (φ = gz) is collocated with the w velocity,

and vorticity points are centered on the cell edges. Currently in WRF, terrain height is

a two-dimensional array that is defined at the locations where the cell centers would be

vertically projected down to the surface. The first step is then to average the terrain height

horizontally to the locations of the other variables (in the no slip case these are u and v). If

the resolution of the terrain data is high enough, it is possible to assign a terrain height at

every computational location in lieu of averaging. Before WRF begins iterating, each node

for each variable (u, v, w) is marked as interior or exterior to the terrain, and the cut cells

are determined. The nodes that are just interior to the terrain are assigned to be ghost
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Figure 3.6. IBM is used to represent urban geometry with steep slopes. In this two-
dimensional case, the u and w ghost points are shown.

points. Figure 3.6 was created using ghost point data from the WRF IBM module, and

illustrates the location of u and w ghost points for a given complex terrain.

After the ghost points are determined, the velocities at all of the interior nodes are set

to zero. Then the no slip boundary condition given by equation (3.5) is imposed by setting

the velocities on the ghost points.

usurf = vsurf = wsurf = 0 (3.5)

For the neutral boundary layer case the surface is aligned with the coordinates, and one

dimensional linear interpolation as proposed by Iaccarino and Verzicco [2003] and pictured

in Figure 3.7 is used with accuracy. Of course, for curvilinear terrain a more sophisticated

interpolation scheme should be implemented. During all of these pre-processing steps,

the domain has been decomposed for parallel processing. Therefore, it is necessary to

add additional halo exchanges and boundary condition updates just before the IBM pre-

processing routines.

Next, WRF begins iterating over the large time step with a three step Runge-Kutta
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Figure 3.7. No Slip IBM.

method. An outline of the iteration process was previously presented in Table 2.1, and it

may be useful to refer to the table for this discussion. During run time, the IBM boundary

condition is set on every Runge-Kutta step just after the acoustic time step, and before

the advancement of scalars. In Table 2.1 this is between steps seven and eight. At the

end of the acoustic loop, the velocities as well as the geopotential are advanced. The

first step is to complete halo exchanges and boundary condition updates. Next, the ghost

points for u, v, and w are recalculated using the updated geopotential value. It should be

noted that the vertical mass coordinate used in WRF is unsteady in time by definition.

This means that unlike the other IB implementations referenced above, the ghost point

locations must be updated periodically. Updating the ghost points on the Runge-Kutta

loop provides a computational savings in comparison to updating them on the acoustic

loop. The disadvantage is that the boundary condition is imposed on the less frequent

large time step instead of the acoustic time step. Once the ghost point update is complete,

linear interpolation is used to determine a value for the velocity at the ghost point which

will enforce a no slip boundary condition, and the new velocity is imposed. Next, WRF

advances the scalar equation and diagnoses the new pressure and density values. The same

sequence of events repeats for the second and third step of the Runge-Kutta scheme.
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3.2.2 Log-Law Velocity Reconstruction

The vast majority of literature written on IB techniques for rigid bodies focuses on

satisfying a no slip boundary condition. For high Reynolds number flows, this means the

thin viscous sublayer should be resolved. This is of course an overwhelming computational

requirement, and various techniques have been used to overcome this difficulty. If the

boundary is stationary, the mesh is often locally refined near the surface. In the case of

moving boundaries, adaptive mesh refinement can be coupled with direct forcing IBM. A

third approach commonly used in atmospheric applications is wall or surface modeling,

where a coarse grid is used and the stresses at the surface are modeled. Senocak et al.

[2004] notes that applying a no slip boundary condition to a surface with coarse resolution

will result in an overestimate of the implied stress, and suggests a surface model be used

with IBM for topographic modeling in atmospheric flows.

In Fadlun et al. [2000] the immersed boundary is modeled by reconstructing the veloc-

ities on fluid nodes. Senocak et al. [2004] suggests a scheme where the tangential flow is

reconstructed at external fluid nodes using the log-law. For a neutrally stratified atmo-

sphere, a log-law profile of the mean velocity is expected in the bottom ten percent of the

boundary layer, which is usually 100 to 200 meters high [Garratt, 1992, Sec. 3.2]. The

log-law velocity reconstruction method proposed by Senocak et al. [2004] is outlined below

for atmospheric boundary layer flow over a flat plate. It would need to be reformulated and

cast in terms of normal and tangential components in order to extend its use to complex

topography.

The tangential velocity reconstruction for the fluid nodes begins with the log-law given

by (3.6), where U is the magnitude of the velocity at height z, u? is the friction velocity, κ

is the von Kármán constant, and zo is the roughness length.

U

u?
=

1
κ

ln
(
z

zo

)
(3.6)

Within the logarithmic layer, the friction velocity u? is constant in the surface normal

direction [Senocak et al., 2004]. Using this property, the relationship given by (3.7) can

be used to reconstruct the magnitude of the velocity at the first fluid point away from the
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boundary based on the velocity at the node above.

U1 = U2
ln(z1/zo)
ln(z2/zo)

(3.7)

Equation (3.7) is given in terms of the magnitude of the horizontal velocity, and it must

be decomposed into u and v components. In order to do this, the direction of the flow is

calculated using (3.8) at the second and third fluid nodes above the boundary.

θ2 = arctan
(
v2
u2

)
, θ3 = arctan

(
v3
u3

)
(3.8)

The direction of the fluid flow θ changes with respect to height. An example of this would the

the Ekman spiral that forms in the atmosphere from Coriolis forcing. Linear extrapolation

is used to determine the direction of fluid flow θ1 on the cut cell. Direct forcing can then

be imposed at the cut cell using the relationship given in (3.9).

u1 = U1 cos θ1, v1 = U1 sin θ1 (3.9)

The vertical velocity at the surface is zero, and direct forcing is applied for w1 at the cut

cell using linear interpolation. This satisfies the boundary condition wsurf = 0 for a flat

plate. However, the complete kinematic boundary condition U · n̂ = 0 would need to be

satisfied for curvilinear boundaries. The velocity is set to zero on nodes that are interior to

the terrain.

Several steps were taken to implement this method into WRF, starting with the addition

of a roughness length variable zo. Originally in WRF the user defined a coefficient of drag.

Equation (3.7) requires that a roughness length be specified instead of a drag coefficient, so

zo was added to WRF for the IBM formulation. Next, the same pre-processor as previously

described in Section 3.2.1 is used to find cut cells. The velocity nodes that are just exterior

to the terrain are saved as cut cells. Equation (3.6) is valid for z > zo, therefore, the node

for a cut cell must be at least a distance of zo from the immersed boundary. This distance

is checked for each node, and if the distance is less than zo the next fluid node is assigned

to be the cut cell. The velocities at nodes interior to the domain are initially set to zero,

but not controlled further after the iteration begins. The velocity reconstruction scheme

is then applied to the cut cells. In order to use equations (3.7), (3.8), and (3.9) the u
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Figure 3.8. Velocity Reconstruction IBM.

and v velocities must be collocated, however, WRF uses a staggered grid. Therefore, for

a u node a four point horizontal average of v is used, and conversely for a v node a four

point horizontal average of u is used. Finally, the vertical velocity w is set to zero on the

surface using linear interpolation. A slight deviation from the Senocak et al. [2004] paper

was made with respect to setting the w velocity. They set w at the first fluid node based

on linear interpolation with the second fluid node. In the version implemented into WRF,

linear interpolation is used to set the vertical velocity at a ghost node.

WRF then begins iterating. As in the no slip implementation the IBM routines are

executed just after the acoustic time step loop on each of the three Runge-Kutta steps. First

halo exchanges, boundary condition updates, and cut cell updates are performed. Then the

velocity reconstruction is applied. Figure 3.8 illustrates the velocity reconstruction IBM

method as implemented in WRF. To summarize, the velocity at U1 is reconstructed using

the magnitude at the second fluid node U2 in the surface normal direction. No normal flow

to the boundary is enforced by setting the vertical velocity at a ghost point wG using the

value at w1.
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3.2.3 Shear Stress Reconstruction

The shear stress reconstruction method blends the IBM ghost cell method with the

original WRF boundary conditions, which set the shear stress at the surface using the log-

law. This methods satisfies the boundary conditions given by equations (3.10a) and (3.10b),

where (3.10a) is the kinematic boundary condition and (3.10b) sets the surface stress τ at

the immersed boundary. In these equations µ is the column mass per unit area.

U · n̂ = 0 (3.10a)

τwxz = −µ

(
κ

ln z1−h
zo

)2

|U|u, τwyz = −µ

(
κ

ln z1−h
zo

)2

|U|v (3.10b)

The shear stress reconstruction IB method is illustrated in Figure 3.9. The kinematic

boundary condition is imposed by setting the velocity at ghost nodes using linear interpo-

lation. In the case of a flat surface this requires wsurf = 0, and the velocity at wG is set

using linear extrapolation from the velocity at the first fluid point and the zero value at

the surface. Surface stresses are also imposed at the ghost points. Once the desired surface

stress is found from equation (3.10b), linear extrapolation is used to set the shear stress

at τG. As with the velocity reconstruction method, the shear stress reconstruction method

would need to be reformulated in terms of normal and tangential components for use with

complex geometries.

Like all of the previous methods the first steps are halo exchanges, boundary condition

updates, and determination of the ghost points. For the shear stress method, only the

velocity ghost points are determined during the domain set up. Vorticity ghost points are

also needed for setting the shear stresses, but these are not found during the initial pre-

processing IBM routines. Once the velocity ghost points are determined, the velocity is

zeroed at all interior nodes. Then the kinematic boundary condition is satisfied by setting

the velocities at the ghost points.

During the iteration process, the diffusive terms are only evaluated on the first step

of the three step Runge-Kutta loop. In Table 2.1 this is step one. If the shear stress

reconstruction method is being used, then additional IBM routines are called at this point.

34



���������������
���������������
���������������
���������������
���������������
���������������

���������������
���������������
���������������
���������������
���������������
���������������

G

1

U 1U

τ 1
W

Gτ

1

τ 1

τG W

Figure 3.9. Shear Stress Reconstruction IBM.

First, geopotential is determined at the vorticity points using horizontal averaging. Then,

the ghost points for τwxz and τwyz are found. Next, the stresses at the surface are determined

from equation (3.10b). In this equation z1 is the height of the first fluid node above the

surface, h is the height of the immersed boundary, and zo is the roughness length. It must

be verified that (z1 − h) is greater than zo. If it is not, then the next fluid node is used

to calculate the drag coefficient. In addition to the coefficient of drag, the magnitude of

the velocity must be known. Just like in the velocity reconstruction method, this requires

averaging on a staggered grid. Four point horizontal averages of v are used to find v on

a u node, and vise versa. Now, the desired shear stress at the surface is known. Linear

extrapolation is used to determine the value of τG that would enforce the desired boundary

condition, and the value of τG is set. During run time, the kinematic boundary condition

is updated just after the acoustic loop on every large time step, as it is for the other two

IBM implementations. This means that the kinematic boundary condition is set three times

during a full Runge-Kutta loop, while the surface stresses are only set one time during the

first R-K step.
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Chapter 4

Neutral Atmospheric Boundary

Layer Simulations

To test the performance of the IBM methods in WRF, the case of a neutral atmospheric

boundary layer (ABL) is considered. The atmospheric boundary layer is the bottom region

of the troposphere, which is in contact with the Earth’s surface. Flow in the boundary layer

region is greatly affected by surface friction and fluxes. A neutral atmosphere is one with a

constant potential temperature. This means that the temperature decrease with height is

prescribed exactly by the adiabatic lapse rate. The bottom ten percent of the atmospheric

boundary layer is called the surface layer or constant flux region. If the atmosphere is

neutral, then the mean velocity profile in the surface layer will follow the log-law.

WRF is an LES capable numerical weather prediction code. It is distributed with

three eddy viscosity turbulence closures including: constant eddy viscosity, Smagorinsky,

and 1.5 order TKE models. Implicit filtering is used for the Smagorinsky and 1.5 TKE

models, meaning that the length scale component of the eddy viscosity is provided by the

grid spacing. Each of the closures is explained in detail in a WRF technical note (see

Skamarock et al. [2005, Chap. 4]). For the case of constant eddy viscosity, the analytical

solution of rotation influenced flow over flat terrain is an Ekman spiral. In the fully turbulent

case, the log-law is expected from scale analysis [Garratt, 1992]. The following sections detail
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the domain and flow set-up, and the effects of the immersed boundary implementations.

The goal is to capture the original WRF solution when using IBM, so comparisons are made

between the simulation results when using the original WRF boundary conditions and each

of the three IBM techniques. Results are also presented for both the Smagorinsky and

1.5 TKE closures. Additionally, the no slip case is modeled with constant eddy viscosity

and compared to the analytical Ekman spiral solution. Finally conclusions are drawn with

suggestions for future work.

4.1 Domain and Flow Set-up

The neutral boundary layer simulations in WRF have a similar flow set-up to those

presented by Andren et al. [1994] and Chow et al. [2005]. Flow is driven by a large scale

constant pressure gradient which would balance a geostrophic wind of (Ug, Vg) = (10,0)

ms−1. The Coriolis parameter f is set to a constant value of 1 x 10−4 s−1. The domain

is horizontally periodic, and has 42 nodes with ∆x = ∆y = 32 m grid spacing in each of

the horizontal dimensions for an overall domain size of 1312 m in each horizontal direction.

The height of the domain is approximately 1500 m or in terms of the pressure coordinate

83.3 kPa, however, the flat surface is placed at a height of 100 m. Forty-two grid points are

used in the vertical dimension with an exponential grid stretching function used to bias the

coordinate spacing towards the surface. The grid stretching function satisfies the rule of

thumb that adjacent cells be stretched by no more than ten percent. In the terrain following

coordinate, all 42 grid points are between 100 m and 1500 m. The minimum vertical grid

spacing is ∆zmin ≈ 9.5 m and the maximum is ∆zmax ≈ 85.2 m. When IBM is used the 42

vertical grid points span the entire 1500 m, with ∆zmin ≈ 10.1 m and ∆zmax ≈ 91.6 m. A

fifth order advection scheme is used in the horizontal dimensions, and third order is used

in the vertical.

Flow is initialized with a sounding that includes constant velocities of (u, v) = (10,0)

ms−1, constant potential temperature θ = 288◦ K, and moisture mixing ratio q = 0 g/kg.

The initial u velocity is seeded with small perturbations near the surface, so that the flow
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transitions to be fully turbulent. Drag at the surface is modeled using a roughness length

zo = 0.1 m for all cases except the no slip case where it is not applicable.

A 0.5 s time step is used for the Runge-Kutta loop, and a 0.05 s time step is used

for the acoustic time step. The simulations were run for 84 hours which is just over 30

non-dimensional time units tf normalized by the Coriolis parameter. Inertial oscillations

are evident in the flow, and are due to imbalances between the pressure gradient and the

Coriolis forcing while the flow is tending towards a steady state solution. The inertial

oscillations have a period of 2π/f , which is ∼17.5 hours for the prescribed Coriolis force in

this model. Figure 4.1 shows the time evolution of the domain averaged u and v velocities

for the original WRF terrain following coordinate and the three IB methods using the

Smagorinsky closure. Figure 4.2 shows the same information on a hodograph. Results for

the TKE turbulence closure are presented in Figures 4.3 and 4.4.

It is immediately apparent that there is an interaction between the velocity reconstruc-

tion IB model and the 1.5 TKE closure that inhibits damping of the inertial oscillations.

With this exception, the inertial oscillations appear to be sufficiently damped after two

periods or ∼35 hours. For this reason, the results in Section 4.2 are averaged over a time

period spanning from 36 to 84 hours or approximately 13 < tf < 30 non-dimensional time

units. For reference, a star marks the 36th hour on the hodographs where the time averag-

ing begins. In comparison Andren et al. [1994] averaged over 7 < tf < 10, and Chow et al.

[2005] averaged over 20 < tf < 30.
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Figure 4.1. Time evolution of domain averaged u and v velocities showing the damping of
inertial oscillations with the Smagorinsky closure.
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Figure 4.2. Domain averaged u and v velocity on a time series hodograph showing the
damping of inertial oscillations with the Smagorinsky closure. The red star marks the time
at 36 hours, which is after ∼2 periods.
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Figure 4.3. Time evolution of domain averaged u and v velocities showing the damping of
inertial oscillations with the 1.5 order TKE closure.
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Figure 4.4. Domain averaged u and v velocity on a time series hodograph showing the
damping of inertial oscillations with the 1.5 order TKE closure. The red star marks the
time at 36 hours, which is after ∼2 periods.
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4.2 Neutral Atmospheric Boundary Layer Results

Figures 4.5 and 4.7 show the horizontally and temporally averaged u and v velocity

profiles with the Smagorinsky and 1.5 TKE closures respectively. The height quantity in the

y-axis is also horizontally and temporally averaged for each case. This is necessary because

the height of the pressure coordinate used in WRF is a function of space and time. The same

averaged u and v quantities are used to calculate wind speed U =
√
ū2 + v̄2, which is shown

on a semi-log plot in Figure 4.6 with the Smagorinsky closure and Figure 4.6 with the 1.5

TKE closure. In these figures the wind speed is non-dimensionalized by the friction velocity

defined as u? =
√
CdU , and the average height is non-dimensionalized by the roughness

length scale zo. The theoretical log-law is also included and shown as a thick black line.

Results from the no slip IBM simulations are excluded from the logarithmic plot because

this boundary condition does not include a wall model or roughness parameterization, so a

logarithmic velocity profile is not expected due to inadequate near surface resolution.

It is clear from the figures that the velocity and shear stress reconstruction models do

an excellent job of recreating the original WRF solution with the Smagorinsky turbulence

closure. The no slip condition would need to be modified to include a roughness parameter-

ization in order to match the results of the original WRF boundary conditions. Looking at

the results from the original WRF boundary condition, it can be seen that the Smagorinsky

turbulence closure does a much better job of recreating the theoretical log-low results than

the 1.5 order TKE model. It is a well known problem in neutral boundary layer simulations

that eddy viscosity models often do not agree with similarity theory in the surface layer

[Chow et al., 2005], so this discrepancy is not entirely unexpected. What is unexpected is

that the velocity and shear stress reconstruction models do not recreate the original WRF

solution with the TKE closure, although, in both the Smagorinsky and TKE models, the

shear stress reconstruction IB method is closer to the original WRF solution than the ve-

locity reconstruction method. TKE models use a bottom boundary condition for the TKE

equation. It is possible that by imposing a boundary condition for TKE at the immersed

boundary, the IBM results would better match the original WRF solution. Despite the
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fact that the inertial oscillations did not damp sufficiently when velocity reconstruction was

combined with the TKE model, this solution best matches the log-law very near the surface

when compared to the original WRF boundary conditions or the shear stress IB model

with the TKE closure. This can be explained by the inherent property of the method which

forces the velocities at the first two fluid nodes above the plate to match the log-law. The

slope of the velocity and shear stress reconstruction models matches the log-law well, even

though there is a significant departure from the log-law near the surface.

The implementation of the no slip method can be further verified by comparing the

simulation results with a constant eddy viscosity νt to the analytical solution of an Ekman

spiral. In the northern hemisphere, where the Coriolis parameter is positive, the Ekman

spiral due to geostrophic winds of ~Vg = (Ug, 0) is given by equations (4.1a) and (4.1b):

u = Ug [1− exp(−aoz) cos(aoz)] (4.1a)

v = Ug exp(−aoz) sin(aoz) (4.1b)

where

a2
o =

f

2νt
.

The boundary conditions for this solution require ~V = 0 at the surface, and ~V → ~Vg as

z →∞.

Figure 4.9 shows the damping of numerical oscillations for the no slip case with a

constant eddy viscosity of 12.5 m2s−1. This simulation ran for ∼20 non-dimensional time

units, therefore temporal averaging is over the range of 13 < tf < 20 or 36 to 54 hours.

Figure 4.10 plots the horizontally and temporally averaged u and v velocity against average

height. The theoretical Ekman spiral is also included in the plot. It can be seen that

the two solutions agree well, especially within the boundary layer region. Some error is

present in the velocity profiles near the top of the domain, and it is possible that this is

due to different top boundary conditions. As previously stated, the analytical solution uses

~V → ~Vg as z → ∞, and WRF uses wsurf = 0 and p′ = 0 at the top vertical coordinate.

Regardless, the agreement in the boundary layer provides proof that the no slip IB method

is implemented correctly.
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Figure 4.5. Mean U and V velocity with the three IBM implementations and the Smagorin-
sky closure. The flat plate is at 100 meters.
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Figure 4.6. Non-dimensionalized mean velocity on a semi-log plot with the Smagorinsky
closure.
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Figure 4.7. Mean U and V velocity with the three IBM implementations and the 1.5 order
TKE closure. The flat plate is at 100 meters.
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Figure 4.8. Non-dimensionalized mean velocity on a semi-log plot with the 1.5 order TKE
closure.
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Figure 4.9. (a) Time evolution of domain averaged u and v velocities showing the damping
of inertial oscillations for the no slip boundary condition with constant eddy viscosity.
(b) Domain averaged u and v velocity on a hodograph showing the damping of inertial
oscillations with a red star marking the time at 36 hours, which is after ∼2 periods.
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Figure 4.10. Ekman spiral and mean U and V velocity for the no slip IBM implementation
with constant eddy viscosity. The flat plate is at 100 meters.
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4.3 Conclusions

Most of the IBM research to date has simulated a no slip boundary condition. This is

adequate because the applications have been at low or moderate Reynolds numbers where

the flow domain was highly resolved. Atmospheric simulations model flows with very high

Reynolds numbers, therefore resolution of the viscous scales is not currently possible. To

overcome this challenge, numerical weather prediction codes employ a surface roughness

parameterization for the bottom boundary condition. It is possible that this idea could be

used in combination with IBM to successfully represent complex surfaces in atmospheric

simulations. To test this theory, three IBM techniques were tested with the NWP code

WRF for the case of a rotation influenced boundary layer.

The no slip boundary condition has been tested by many researchers, and extended to

complex boundaries in three-dimensional flows. Many interpolation methods for bound-

ary reconstruction exist for the no slip case. In contrast, the velocity and shear stress

reconstruction methods would need to be reformulated in terms of normal and tangential

components to be applied to complex terrain. The next step in testing these methods would

be to extend them to complex terrain and model the canonical cases of two-dimensional

flow over an isolated hill and three-dimensional flow over a Gaussian hill.

It was seen that IBM is a viable option in NWP, and specifically WRF, for removing

the barriers to modeling complex geometries created by the use of terrain following co-

ordinates. Additionally, surface models combined with IBM show improved performance

over the traditional no slip IBM boundary condition in their ability to recreate the solution

given by the original WRF boundary conditions for the case of a neutral boundary layer.

Interactions that warrant further study were seen between the 1.5 TKE closure and the

IBM implementations. While difficulties exist in reformulating these methods for complex

terrain, the potential gain in performance makes further study a worthwhile endeavor.
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